پنل خورشیدی
در حال حاضر دو فناوری در ساخت سلولهای خورشیدی غالب است: فناوری نسل اول و نسل دوم. فناوری نسل اول بر پایه ویفرهای سیلیکونی با ضخامت ۴۰۰-۳۰۰ میکرومتر است که ساختاری بلوری یا چند بلوری دارند که یا از بریدن شمش بدست میآیند یا از روش EFG و با کمک خاصیت مویینگی رشد داده میشوند. تکنولوژی نسل دوم یا تکنولوژی لایه نازک ، براساس لایه نشانی نیمهه هادی روی بسترهای شیشهای، فلزی یا پلیمری، در ضخامت¬های ۵-۳ است[۱]. هزینه مواد اولیه در تکنولوژی نسل دوم، پایین¬تر است و از آن گذشته، اندازه سلول تا ۱۰۰ برابر بزرگتر از اندازه سلول ساخته شده با تکنولوژی نسل اول است که مزیتی برای تولید انبوه آن محسوب میشود. در عوض بازدهی سلولهای نسل اول، که اغلب سلولهای بازار را تشکیل میدهند، به دلیل کیفیت بالاتر مواد، از بازدهی سلولهای نسل دوم بیشتر است. انتظار میرود اختلاف بازدهی میان سلولهای دو نسل با گذشت زمان کمتر شده و تکنولوژی نسل دوم جایگزین نسل اول شود[۲] در سال 1961، Shockley و Queisser با در نظر گرفتن یک سلول خورشیدی پیوندی به شکل یک جسم سیاه با دمای 300 کلوین نشان دادند که بیشترین بازدهی یک سلول خورشیدی صرف نظر از نوع تکنولوژی بکار رفته در آن، 30% است که در انرژی شکاف eV1.4 یعنی انرژی شکاف گالیم آرسناید بدست می آید[۳]. بنابراین بازدهی سلول های خورشید نسل اول و دوم حتی در بهترین حالت نمی تواند از حوالی 30% بیشتر شود. این در حالی است که حد کارنو برای تبدیل انرژی خورشیدی به انرژی الکتریکی 95% است[۴]. و این مقدار تقریباً سه برابر بیشتر از بازدهی نهایی سلولهای نسل اول و دوم است. بنابراین دستیابی به سلول هایی با بازدهی هایی دو تا سه برابر بازدهی های کنونی، امکان پذیر است. سلول های خورشیدی که دارای چنین بازدهی هایی باشند، نسل سوم سلول های خورشیدی نامیده می شوند. سلول های متوالی ، سلول های خورشیدی چاه کوانتومی ، سلول های خورشیدی نقطه کوانتومی ، سلول های حامل داغ ، نسل سوم سلول های خورشیدی را تشکیل می دهند